Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Zhejiang Univ Sci B ; 24(4): 371-372, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37056214

RESUMEN

Following an Assessment by the Autonomous University of Hidalgo State and the National Institute of Genomic Medicine, this erratum corrects the authorship of this article by adding Dulce María MORENO-GARCÍA as the first author.

2.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362411

RESUMEN

The clinical phenotype of LMNA-associated dilated cardiomyopathy (DCM) varies even among individuals who share the same mutation. LMNA encodes lamin AC, which interacts with the lamin-associated protein 2 alpha (LAP2α) encoded by the TMPO gene. The LAP2α/Arg690Cys polymorphism is frequent in Latin America and was previously found to disrupt LAP2α-Lamin AC interactions in vitro. We identified a DCM patient heterozygous for both a lamin AC truncating mutation (Ser431*) and the LAP2α/Arg690Cys polymorphism. We performed protein modeling and docking experiments, and used confocal microscopy to compare leukocyte nuclear morphology among family members with different genotype combinations (wild type, LAP2α Arg690Cys heterozygous, lamin AC/Ser431* heterozygous, and LAP2α Arg690Cys/lamin AC Ser431* double heterozygous). Protein modeling predicted that 690Cys destabilizes the LAP2α homodimer and impairs lamin AC-LAP2α docking. Lamin AC-deficient nuclei (Ser431* heterozygous) showed characteristic blebs and invaginations, significantly decreased nuclear area, and increased elongation, while LAP2α/Arg690Cys heterozygous nuclei showed a lower perimeter and higher circularity than wild-type nuclei. LAP2α Arg690Cys apparently attenuated the effect of LMNA Ser431* on the nuclear area and fully compensated for its effect on nuclear circularity. Altogether, the data suggest that LAP2α/Arg690Cys may be one of the many factors contributing to phenotype variation of LMNA-associated DCM.


Asunto(s)
Cardiomiopatía Dilatada , Timopoyetinas , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Lamina Tipo A/metabolismo , Leucocitos/metabolismo , Mutación , Mutación Missense , Proteínas Nucleares/genética
3.
J Zhejiang Univ Sci B ; 22(12): 1045-1052, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34904416

RESUMEN

Hepatocellular carcinoma (HCC), which is the most frequent primary liver malignancy, is ranked as the sixth most common cancer and the third leading cause of cancer-related deaths worldwide, with its incidence expected to continue rising. One of the reasons is that most patients are diagnosed at an advanced stage when therapeutic options are ineffective. The development of HCC is attributed to a chronic exposition to either one or a combination of low amounts of different hepatotoxins, such as in hepatitis virus infection, alcohol consumption, aflatoxin from contaminated foods, metabolic factors, and exposure to chemical carcinogens from tobacco smoke (Forner et al., 2018). Integrative studies combining exome sequencing, transcriptome analysis, and the genomic characterization of HCC have shown that these etiological factors may raise the frequency of particular genetic alterations, resulting in intra-tumor heterogeneity that presents a huge challenge for treatment. For example, mutations in the catenin ß-1 (CTNNB1) gene (a proto-oncogene in the WNT signaling pathway that encodes the ß|-catenin transcription factor) are strongly associated with alcohol-related HCC, whereas mutations in the telomerase reverse transcriptase (TERT) promoter and tumor protein p53 (TP53) genes are the most commonly observed in hepatitis B virus (HBV)|-associated HCC (Calderaro et al., 2017; Cancer Genome Atlas Research Network, 2017). The above findings emphasize the molecular diversity of HCC and the associations of different etiologies with distinct mechanisms in HCC progression. Consequently, prevention strategies are still attractive for HCC management.


Asunto(s)
Neoplasias Hepáticas Experimentales/prevención & control , Tenebrio , Animales , Dietilnitrosamina , Antígeno Ki-67/análisis , Larva , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pupa , beta Catenina/análisis , beta Catenina/genética
4.
Front Genet ; 12: 647343, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335680

RESUMEN

Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating autoimmune disease of the central nervous system, more prevalent in individuals of non-European ancestry. Few studies have analyzed genetic risk factors in NMOSD, and HLA class II gene variation has been associated NMOSD risk in various populations including Mexicans. Thymopoietin (TMPO) has not been tested as a candidate gene for NMOSD or other autoimmune disease, however, experimental evidence suggests this gene may be involved in negative selection of autoreactive T cells and autoimmunity. We thus investigated whether the missense TMPO variant rs17028450 (Arg630Cys, frequent in Latin America) is associated with NMOSD, and whether this variant shows an interaction with HLA-class II rs9272219, previously associated with NMOSD risk. A total of 119 Mexican NMOSD patients, 1208 controls and 357 Native Mexican individuals were included. The HLA rs9272219 "T" risk allele frequency ranged from 21 to 68%, while the rs17028450 "T" minor allele frequency was as high as 18% in Native Mexican groups. Both rs9272219 and rs17028450 were significantly associated with NMOSD risk under additive models (OR = 2.48; p = 8 × 10-10 and OR = 1.59; p = 0.0075, respectively), and a significant interaction between both variants was identified with logistic regression models (p = 0.048). Individuals bearing both risk alleles had an estimated 3.9-fold increased risk of NMOSD. To our knowledge, this is the first study reporting an association of TMPO gene variation with an autoimmune disorder and the interaction of specific susceptibility gene variants, that may contribute to the genetic architecture of NMOSD in admixed Latin American populations.

5.
Rev. invest. clín ; 73(3): 132-137, May.-Jun. 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1280449

RESUMEN

ABSTRACT Background: Fukuyama congenital muscular dystrophy (FCMD) is the most common form of a group of autosomal recessive disorders characterized by altered α-dystroglycan glycosylation and caused by FKTN gene mutations. However, mutations of this gene may cause a broad range of phenotypes, including Walker-Warburg syndrome, muscle-brain-eye disease, FCMD, limb-girdle muscular dystrophy without mental retardation, and cardiomyopathy with no or minimal skeletal muscle weakness. Objective: Our purpose was to describe two siblings who died at a young age with dilated cardiomyopathy (DCM), no muscle weakness, or atrophy, and were homozygous for a FKTN missense mutation. Methods: Site-directed next-generation sequencing (NGS) was performed. Pathogenicity of variants of interest was established according to the American College of Medical Genetics (ACMG) criteria, and all available first-degree relatives were screened for mutations by Sanger sequencing. Results: NGS revealed a homozygous FKTN variant in the index case (p.Gly424Ser, rs752358445), classified as likely pathogenic by ACMG criteria. Both parents and an unaffected brother were heterozygous carriers. Since the siblings had no apparent skeletal muscle weakness or central nervous system involvement, FKTN mutations were not initially suspected. Conclusions: This is the first report demonstrating that heterozygous individuals for the FKTN p.Gly424Ser mutation were healthy, while two homozygous brothers suffered severe DCM, strongly suggesting that this FKTN mutation is a rare cause of autosomal recessive DCM.

6.
Rev Invest Clin ; 73(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33048919

RESUMEN

BACKGROUND: Fukuyama congenital muscular dystrophy (FCMD) is the most common form of a group of autosomal recessive disorders characterized by altered α-dystroglycan glycosylation and caused by FKTN gene mutations. However, mutations of this gene may cause a broad range of phenotypes, including Walker-Warburg syndrome, muscle-brain-eye disease, FCMD, limbgirdle muscular dystrophy without mental retardation, and cardiomyopathy with no or minimal skeletal muscle weakness. OBJECTIVE: Our purpose was to describe two siblings who died at a young age with dilated cardiomyopathy (DCM), no muscle weakness, or atrophy, and were homozygous for a FKTN missense mutation. METHODS: Site-directed next-generation sequencing (NGS) was performed. Pathogenicity of variants of interest was established according to the American College of Medical Genetics (ACMG) criteria, and all available first-degree relatives were screened for mutations by Sanger sequencing. RESULTS: NGS revealed a homozygous FKTN variant in the index case (p.Gly424Ser, rs752358445), classified as likely pathogenic by ACMG criteria. Both parents and an unaffected brother were heterozygous carriers. Since the siblings had no apparent skeletal muscle weakness or central nervous system involvement, FKTN mutations were not initially suspected. CONCLUSIONS: This is the first report demonstrating that heterozygous individuals for the FKTN p.Gly424Ser mutation were healthy, while two homozygous brothers suffered severe DCM, strongly suggesting that this FKTN mutation is a rare cause of autosomal recessive DCM.

7.
Mol Genet Genomic Med ; 8(11): e1504, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32969603

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of nonischemic heart failure and death in young adults. Next generation sequencing (NGS) has become part of the diagnostic workup in idiopathic and familial DCM. More than 50 DCM genes have been identified, revealing great molecular heterogeneity and variable diagnostic yield. Interpretation of variant pathogenicity is challenging particularly in underrepresented populations, as pathogenic variant databases include studies mainly from European/Caucasian populations. To date, no studies on genomic diagnosis of DCM have been conducted in Mexico. METHODS: We recruited 55 unrelated DCM patients, 22 familial (F-DCM), and 33 idiopathic (I-DCM), and performed site-directed NGS seeking causal mutations. Diagnostic yield was defined as the proportion of individuals with at least one pathogenic (P) or likely pathogenic (LP) variant in DCM genes. RESULTS: Overall diagnostic yield was 47.3%, and higher in F-DCM (63.6%) than in I-DCM (36.4%, p = 0.047). Overall, NGS disclosed 41 variants of clinical interest (61.0% novel), 27 were classified as P/LP and 14 of unknown clinical significance. Of P/LP variants, 10 were A-band region TTN truncating variants, five were found in DSP (18.5%), five in MYH7 (18.5%), two in LMNA (7.4%), and one in RBM20, ABCC9, FKTN, ACTA1, and TNNT2. NGS findings suggested autosomal recessive inheritance in three families, two with DSP loss of function mutations in affected individuals. The increasing number of mutation reports in DCM, increasing knowledge on the functional consequences of mutations, mutational hotspots and functional domains of DCM-related proteins, the recent refinement ACMG/ClinGen Guidelines, and co-segregation analysis in DCM families helped increase the diagnostic yield. CONCLUSION: This is the first NGS study performed in a group of Mexican DCM patients, contributing to understand the mutational spectrum and complexity of DCM molecular diagnosis.


Asunto(s)
Cardiomiopatía Dilatada/genética , Frecuencia de los Genes , Adolescente , Adulto , Miosinas Cardíacas/genética , Conectina/genética , Desmoplaquinas/genética , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lamina Tipo A/genética , Masculino , México , Cadenas Pesadas de Miosina/genética , Análisis de Secuencia de ADN
8.
Sci Rep ; 10(1): 13706, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792643

RESUMEN

Neuromyelitis Optica (NMO) is an autoimmune disease with a higher prevalence in non-European populations. Because the Mexican population resulted from the admixture between mainly Native American and European populations, we used genome-wide microarray, HLA high-resolution typing and AQP4 gene sequencing data to analyze genetic ancestry and to seek genetic variants conferring NMO susceptibility in admixed Mexican patients. A total of 164 Mexican NMO patients and 1,208 controls were included. On average, NMO patients had a higher proportion of Native American ancestry than controls (68.1% vs 58.6%; p = 5 × 10-6). GWAS identified a HLA region associated with NMO, led by rs9272219 (OR = 2.48, P = 8 × 10-10). Class II HLA alleles HLA-DQB1*03:01, -DRB1*08:02, -DRB1*16:02, -DRB1*14:06 and -DQB1*04:02 showed the most significant associations with NMO risk. Local ancestry estimates suggest that all the NMO-associated alleles within the HLA region are of Native American origin. No novel or missense variants in the AQP4 gene were found in Mexican patients with NMO or multiple sclerosis. To our knowledge, this is the first study supporting the notion that Native American ancestry significantly contributes to NMO susceptibility in an admixed population, and is consistent with differences in NMO epidemiology in Mexico and Latin America.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Acuaporina 4/genética , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Neuromielitis Óptica/epidemiología , Neuromielitis Óptica/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Humanos , Masculino , México/epidemiología
9.
Basic Clin Pharmacol Toxicol ; 127(5): 389-404, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32524749

RESUMEN

Alcoholic liver disease (ALD) may be attributed to multiple hits driving several alterations. The aim of this work was to determine whether nucleoredoxin (NXN) interacts with flightless-I (FLII)/actin complex and how this ternary complex is altered during ALD progression induced by different ALD models. ALD was recapitulated in C57BL/6J female mice by the well-known ALD Lieber-DeCarli model, and by an in vitro human co-culture system overexpressing NXN. The effects of ethanol and low doses of lipopolysaccharides (LPS) and diethylnitrosamine (DEN) were also evaluated in vivo as a first approach of an ALD multi-hit protocol. We demonstrated that NXN interacts with FLII/actin complex. This complex was differentially altered in ALD in vivo and in vitro, and NXN overexpression partially reverted this alteration. We also showed that ethanol, LPS and DEN synergistically induced liver structural disarrangement, steatosis and inflammatory infiltration accompanied by increased levels of proliferation (Ki67), ethanol metabolism (CYP2E1), hepatocarcinogenesis (GSTP1) and LPS-inducible (MYD88 and TLR4) markers. In summary, we provide evidence showing that NXN/FLII/actin complex is involved in ALD progression and that NXN might be involved in the regulation of FLII/actin-dependent cellular functions. Moreover, we present a promising first approach of a multi-hit protocol to better recapitulate ALD pathogenesis.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Proteínas de Microfilamentos/metabolismo , Oxidorreductasas/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP2E1/metabolismo , Dietilnitrosamina/farmacología , Etanol , Femenino , Lipopolisacáridos/farmacología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL
10.
Arch. cardiol. Méx ; 90(1): 59-68, Jan.-Mar. 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1131007

RESUMEN

Abstract Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy without apparent cardiac justification. Sudden cardiac death may be the first manifestation of the disease. It occurs mainly in adulthood and can be seen in childhood and adolescence where genetic origin predominates. Primary HCM (“familial”) is inherited in an autosomal dominant pattern in the 25 subtypes informed in Online Mendelian Inheritance in Man. The proteins encoded by the mutated genes are part of the sarcomere in the cardiac cells, being the thick filament the most frequently affected, with the worst prognosis. In the present article, we describe the Mendelian inheritance of the disease and the two most associated genes with sudden death: MYBPC3 and MYH7.


Resumen La miocardiopatía hipertrófica (MCH) es el aumento de grosor de la pared ventricular izquierda no relacionada con otras alteraciones cardíacas. Es una enfermedad que puede presentar como primera manifestación clínica la muerte súbita y de ahí su relevancia clínica. Aunque se presenta sobre todo en la edad adulta, puede aparecer durante la infancia y adolescencia, en las que predominan los casos de origen hereditario. La MCH primaria, de causa genética, muestra en particular un patrón de herencia autosómico dominante en los 25 subtipos reconocidos en OMIM (Online Mendelian Inheritance in Man). Las proteínas codificadas por los genes mutantes forman parte del sarcómero en células musculares cardíacas, y las variantes patogénicas de filamentos gruesos son las de mayor frecuencia y peor pronóstico. En este artículo se describen la herencia mendeliana de la enfermedad y la relación con muerte súbita de los genes más frecuentemente encontrados en ella: MYBPC3 y MYH7.


Asunto(s)
Humanos , Preescolar , Adolescente , Adulto , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/fisiopatología
11.
Arch Cardiol Mex ; 90(1): 58-68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31996869

RESUMEN

Hypertrophic cardiomyopathy is characterized by left ventricular hypertrophy without apparent cardiac justification. Sudden cardiac death may be the first manifestation of the disease. It occurs mainly in adulthood and can be seen in childhood and adolescence where genetic origin predominates. Primary HCM ("familial") is inherited in an autosomal dominant pattern in the 25 subtypes informed in Online Mendelian Inheritance in Man. The proteins encoded by the mutated genes are part of the sarcomere in the cardiac cells, being the thick filament the most frequently affected, with the worst prognosis. In the present article, we describe the Mendelian inheritance of the disease and the two most associated genes with sudden death: MYBPC3 and MYH7.


La miocardiopatía hipertrófica (MCH) es el aumento de grosor de la pared ventricular izquierda no relacionada con otras alteraciones cardíacas. Es una enfermedad que puede presentar como primera manifestación clínica la muerte súbita y de ahí su relevancia clínica. Aunque se presenta sobre todo en la edad adulta, puede aparecer durante la infancia y adolescencia, en las que predominan los casos de origen hereditario. La MCH primaria, de causa genética, muestra en particular un patrón de herencia autosómico dominante en los 25 subtipos reconocidos en OMIM (Online Mendelian Inheritance in Man). Las proteínas codificadas por los genes mutantes forman parte del sarcómero en células musculares cardíacas, y las variantes patogénicas de filamentos gruesos son las de mayor frecuencia y peor pronóstico. En este artículo se describen la herencia mendeliana de la enfermedad y la relación con muerte súbita de los genes más frecuentemente encontrados en ella: MYBPC3 y MYH7.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Cardiomiopatía Hipertrófica/fisiopatología , Preescolar , Humanos
12.
Toxicol Appl Pharmacol ; 378: 114611, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176654

RESUMEN

Hepatocellular carcinoma (HCC) arises after a long period of exposition to etiological factors that might be either independent or collectively contributing. Several rodent models resemble human HCC; however, the major limitation of these models is the lack of chronic injury that reproducibly mimics the molecular alterations as it occurs in humans. Thus, we hypothesized that chronic administration of different DEN treatments identifies the best-fit dose to induce the HCC and/or to determine whether small DEN doses act synergistically with other known hepatotoxins to induce HCC in mice. C57BL/6 J male mice were intraperitoneally injected twice a week for 6 weeks with different DEN doses ranging from 2.5 to 40 mg/kg body weight; then, selected doses (2.5, 5 and 20 mg/kg) for 6, 10, 14, and 18 weeks. We demonstrated that DEN at 20 mg/kg promoted reactive oxygen species and 4-hydroxynonenal production, cell proliferation inflammatory infiltrate, and fibrosis, which in turn induced liver cancer by week 18. These parameters were established by evaluating histopathological changes, HCC markers such as glutathione S-transferase placental-1 (Gstp1), Cytokeratin-19 (Ck19) and prostaglandin reductase-1 (Ptgr1); that of Cyp2e1, a DEN metabolizing enzyme; and the expression of the proliferation marker Ki67. While DEN at 2.5 and 5 mg/kg increased Gstp1 and Ck19, DEN at 20 mg/kg decreased them and Cyp2e1 expression and activity. In summary, our results demonstrate that DEN chronically administrated at 20 mg/kg induces the HCC, while DEN at 2.5 and 5 mg/kg could be useful in elucidating its synergistic effect with other hepatotoxic agents in mice.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Dietilnitrosamina/administración & dosificación , Dietilnitrosamina/efectos adversos , Neoplasias Hepáticas/inducido químicamente , Hígado/efectos de los fármacos , Animales , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
13.
PLoS One ; 12(10): e0186435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29028826

RESUMEN

The innate immune response of Anopheles gambiae involves the transcriptional upregulation of effector genes. Therefore, the cis-regulatory sequences and their cognate binding factors play essential roles in the mosquito's immune response. However, the genetic control of the mosquito's innate immune response is not yet fully understood. To gain further insight on the elements, the factors and the potential mechanisms involved, an open chromatin profiling was carried out on A. gambiae-derived immune-responsive cells. Here, we report the identification of cis-regulatory sites, immunity-related transcription factor binding sites, and cis-regulatory modules. A de novo motif discovery carried out on this set of cis-regulatory sequences identified immunity-related motifs and cis-regulatory modules. These modules contain motifs that are similar to binding sites for REL-, STAT-, lola- and Deaf1-type transcription factors. Sequence motifs similar to the binding sites for GAGA were found within a cis-regulatory module, together with immunity-related transcription factor binding sites. The presence of Deaf1- and lola-type binding sites, along with REL- and STAT-type binding sites, suggests that the immunity function of these two factors could have been conserved both in Drosophila and Anopheles gambiae.


Asunto(s)
Anopheles/genética , Anopheles/inmunología , Inmunidad Innata/genética , Proteínas de Insectos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Animales , Anopheles/metabolismo , Cromatina/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...